Languages

Extending F# Pipelines with a Tee Function

In functional programming we strive to minimize side-effects but not only are some side-effects desirable, in the largely object-oriented world in which many of us still operate such side-effects are often unavoidable. There are plenty of APIs that rely on side-effects particularly when it comes to initializing types or properties. One example that immediately comes to mind is building up an HttpResponseMessage in Web API 2. Consider the following snippet which creates a response containing the contents of a stream and sets some relevant header values:

member __.GetFile() =
  // ... SNIP ...
  let response = new HttpResponseMessage(HttpStatusCode.OK, Content = new StreamContent(stream))
  response.Content.Headers.ContentType <- MediaTypeHeaderValue("application/octet-stream")
  response.Content.Headers.ContentLength <- Nullable.op_Implicit stream.Length
  response.Content.Headers.ContentDisposition <- new ContentDispositionHeaderValue("attachment", FileName = "test.pdf")
  response

This code is straight-forward but it’s highly imperative. Like side-effects, imperative code isn’t necessarily a bad thing but it would be nice to tame it a bit by initializing the header values as part of a pipeline while still returning the response message. Doing so isn’t hard: just create the HttpResponseMessage instance via the constructor and pipe it to a function that does the initialization before returning, right?

member __.GetFile() =
  // ... SNIP ...
  new HttpResponseMessage(HttpStatusCode.OK, Content = new StreamContent(stream))
  |> (fun response -> response.Content.Headers.ContentType <- MediaTypeHeaderValue("application/octet-stream")
                      response.Content.Headers.ContentLength <- Nullable.op_Implicit stream.Length
                      response.Content.Headers.ContentDisposition <- new ContentDispositionHeaderValue("attachment", FileName = "test.pdf")
                      response)

This is a perfectly acceptable approach and is something I’ve definitely done plenty of times but all it has achieved is moving the explicit return into the function. After doing this a few times, you might start to think there has to be a way to standardize this pattern and you’d be right.

Over the holidays I finally found some time to relax and although I spent a great deal of time glued to Assassin’s Creed: Unity on my Xbox One I managed to read a few more articles than usual. Something that struck me as interesting was that I noticed a theme across several of the code samples: they were using a tee function within a pipeline. The tee function isn’t part of the core F# libraries and I couldn’t recall having encountered it before so I started doing some background investigation.

One of the first sites I found that mentioned the function in the context of F# was Scott Wlaschin’s excellent Railway Oriented Programming article which I’d read previously but clearly not thoroughly enough. In the article Scott says he named the function after a Unix command of the same name. The Unix command, which is named after plumbing tee fittings, splits a pipeline such that input flows to both standard output and a file. This is certainly useful for logging in shell scripts but its possibilities are much more interesting in an F# pipeline.

The tee function is a simple function which essentially says “given a value, apply a function to it, ignore the result, then return the original value.” It’s basic definition is as follows:

let inline tee fn x = x |> fn |> ignore; x

By introducing the tee function into the pipelined version of the GetFile method we can remove the explicit return:

member __.GetFile() =
  // ... SNIP ...
  new HttpResponseMessage(HttpStatusCode.OK, Content = new StreamContent(stream))
  |> tee (fun response -> response.Content.Headers.ContentType <- MediaTypeHeaderValue("application/octet-stream")
                          response.Content.Headers.ContentLength <- Nullable.op_Implicit stream.Length
                          response.Content.Headers.ContentDisposition <- new ContentDispositionHeaderValue("attachment", FileName = "test.pdf"))

Now the pipeline looks more like what we might expect since we’re no longer explicitly returning the response from the lambda expression.

Depending on your style preferences, injecting the tee function explicitly into the pipeline as you would a Seq.filter or other such function might bother you. To me, the tee function is a perfect candidate for a custom operator so let’s define one.

let inline ( |>! ) x fn = tee fn x

Here we’ve defined |>! as the tee operator (this is the same symbol that WebSharper uses). Notice how the parameter order is reversed from the tee function. This is due to the fact that when using our new operator, we’re not relying on partial application to invoke the tee function. Now we can eliminate the explicit reference to the function, making the operation look like a natural part of the F# language.

member __.GetFile() =
  // ... SNIP ...
  new HttpResponseMessage(HttpStatusCode.OK, Content = new StreamContent(stream))
  |>! (fun response -> response.Content.Headers.ContentType <- MediaTypeHeaderValue("application/octet-stream")
                       response.Content.Headers.ContentLength <- Nullable.op_Implicit stream.Length
                       response.Content.Headers.ContentDisposition <- new ContentDispositionHeaderValue("attachment", FileName = "test.pdf"))

Since the tee function/operator is intended to allow side-effects within a pipeline it is ideal for adding logging or other diagnostics into a pipeline (as was the intent in the original Unix command). For instance, to write out a message as each header value is set, we can simply split the tee’d function above into separate functions, inserting a tee’d logging function in between:

member __.GetFile() =
  // ... SNIP ...
  new HttpResponseMessage(HttpStatusCode.OK, Content = new StreamContent(stream))
  |>! (fun _ -> Debug.WriteLine "Created response")
  |>! (fun r -> r.Content.Headers.ContentType <- MediaTypeHeaderValue("application/octet-stream"))
  |>! (fun r -> Debug.WriteLine("Set content type: {0}",
                                [| box r.Content.Headers.ContentType.MediaType |]))
  |>! (fun r -> r.Content.Headers.ContentLength <- Nullable.op_Implicit stream.Length)
  |>! (fun r -> Debug.WriteLine("Set content length: {0}",
                                [| box r.Content.Headers.ContentLength.Value |]))
  |>! (fun r -> r.Content.Headers.ContentDisposition <- new ContentDispositionHeaderValue("attachment", FileName = "test.txt"))
  |>! (fun r -> Debug.WriteLine("Set content disposition: {0}",
                                [| box r.Content.Headers.ContentDisposition.DispositionType |]))

By introducing the tee function and operator you give yourself another tool for taming the imperative code and side-effects that tend to pop up in software projects of any complexity.

Advertisement

Busy Week Ahead

[12/15/2014 Update] Due to time concerns FunScript has been dropped from the Indy F# meeting. If you were really looking forward an introduction to FunScript stay tuned – we’ll be coming back to it in a few months.

This is a busy week for me on the community front with talks at multiple Indianapolis user groups. If either of these topics interest you I hope you’ll register and join us.

Indy F#

Double Feature: Type Providers and FunScript
Type Providers

Tuesday, December 16, 7:00 PM
Launch Fishers (info and registration)

On Tuesday I’ll be kicking off an Indy F# double feature by talking about Type Providers. We’ll begin with a short tour of several existing type providers and seeing how they make accessing data virtually effortless. With a good taste of what type providers can do we’ll then look behind the curtain to see how they work by walking through creating a custom type provider that reads ID3 tags from MP3 files.

Brad Pillow will follow with an introduction to building single-page applications with FunScript.

Indy Software Artisans

TypeScript: Bringing Sanity to JavaScript
Thursday, December 18, 5:30 PM
SEP (info and registration)

On Thursday I’ll change gears from F# to TypeScript. If writing JavaScript frustrates you or you just want to be more productive when developing browser-based applications you’ll definitely want to check out TypeScript. This session is not only a tour of TypeScript’s language features but also highlights the resulting JavaScript code. To help showcase how TypeScript can fit into your new or existing projects, the demo application is an AngularJS and Bootstrap application driven entirely by TypeScript.

C# 6.0 – String Interpolation

[7/30/2015] This article was written against a pre-release version of C# 6.0. Be sure to check out the list of my five favorite C# 6.0 features for content written against the release!

I really debated about whether I should write about C#’s upcoming string interpolation feature yet. On one hand it’s an interesting feature that I’m looking forward to. On the other hand, it has already been announced that the feature is going to change from its implementation in the current preview. With that in mind I decided that it’s interesting enough to go ahead and write about it using the current syntax but highlight how it will change, much like how it has been done in the feature description document.

When I first heard that string interpolation was coming to C# I immediately experienced flashbacks to the very early days of my career when I was working with some Perl scripts. I really hated working with the language but something that always stuck with me and I missed when jumping to other languages was its string interpolation feature.

At a glance, Perl’s string interpolation feature let us embed variable names inside string literals and the compiler would handle the details of replacing the variable name with the value. My Perl is rusty to say the least but a simple example would essentially look like this:

my $name = "Dave";
print "My name is $name";

Upon execution, the script would write out the following text:

My name is Dave

Side note: I think this is the first time Perl has appeared on this blog. Hopefully it’ll be the last!

Perl’s implementation is more advanced than I’ve shown in this example but it clearly shows the usefulness of the feature. When .NET finally came along and I learned about String.Format I had hopes that it could evolve into something like the Perl feature described above. String.Format is certainly a useful method but it can quickly become a maintenance headache.

Traditional format strings have a number of problems each stemming from the index-based hole approach. First, each value must be supplied in the order that corresponds to the index which isn’t necessarily the order that the values appear in the string. Next, as the number of holes increases, it can be difficult to discern what each hole represents. This isn’t normally a problem for strings with only a few holes but consider the nightmare of keeping indices straight on a format string with more than 50 holes like I once encountered. Finally, String.Format validates only that enough values were supplied to fill each of the holes but if values were provided than there are holes there’s not even a compiler warning. Combine this with one of those 57-hole strings and good luck finding which indices are off or which values should be removed.

C#’s string interpolation aims to fix each of the aforementioned problems. The current implementation uses a slightly clunky version of the traditional format string syntax in that each hole must be prefixed with a backslash. Here’s how the previous example would be written in C# 6.0 using the syntax that’s in the current preview:

var name = "Dave";
WriteLine("My name is \{name}");

Just as in the Perl example, the compiler will resolve the name and fill the hole with the appropriate value. What’s more is that the compiler also verifies that each name exists in the current context and flags anything it can’t resolve as an error.

Per the upcoming features document, this syntax will be changed to something a bit friendlier. Rather than prefixing each hole with a backslash, the string will be identified as an interpolated string by prefixing it with a dollar sign like this:

var name = "Dave";
WriteLine($"My name is {name}");

In this trivial example the net effect on the code is moving and replacing a single character but it’s easy to imagine more complex interpolated strings becoming significantly shorter. (There will also be a FormattedString class added to the System.Runtime.CompilerServices namespace to facilitate custom formatting via the IFormattable interface but I won’t cover that in this article).

That interpolated strings (in either form) closely resemble traditional format strings is not entirely coincidental because ultimately, each interpolated string is syntactic sugar for invoking String.Format. Essentially, the compiler replaces each of the named holes with indexed holes and constructs the value array from the provided names. The benefit of this is that anything you can do with traditional format strings such as including alignment and format specifiers also is also possible with interpolated strings. For instance, we could easily represent a date in ISO 8601 format as follows:

"Current Date and Time (UTC): \{DateTime.UtcNow:o}"

So that’s C#’s string interpolation feature in a nutshell and I’m pretty excited about the direction it’s going because it’ll gradually clean up a lot of code. Since the feature is still under development there’s an active discussion in progress over on the Roslyn site. If you’re interested in seeing some of the thought process behind where this feature is going I encourage you to check it out.

C# 6.0 – nameof Expressions

[7/30/2015] This article was written against a pre-release version of C# 6.0. Be sure to check out the list of my five favorite C# 6.0 features for content written against the release!

I’ve lost track of the number of times I’ve needed to pass along the name of something be it a property, method, or type. Historically we’ve relied on hard-coded strings to convey this information but as we’re all too well aware, relying on strings in such a manner is just asking for future problems. For a prime example, we need look no further than our old friend INotifyPropertyChanged.

Consider the following Circle class which typifies the basic INotifyPropertyChanged implementation pattern:

public class Circle
  : INotifyPropertyChanged
{
  public event PropertyChangedEventHandler PropertyChanged;

  private double _radius;
  public double Radius
  {
    get { return _radius; }
    set
    {
      _radius = value;
      RaisePropertyChanged(&quot;Radius&quot;);
    }
  }

  private void RaisePropertyChanged(string propertyName)
  {
    if (PropertyChanged == null) return;

    PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
  }
}

Although this class is pretty boilerplate, it highlights the problem well. First, we’ve violated the DRY principle by encoding a member name in a string. Next, we’ve introduced fragility by relying on the string always reflecting the property name exactly; should the property name ever change we need to remember to change the string as well lest we waste some cycles tracking down why an event handler isn’t picking up the property change. What’s worse is that by encoding the name within a string, we get no compile-time support alerting us to the discrepancy.

The story around INotifyPropertyChanged and other similar scenarios has improved over the years as people have come up with some creative solutions. For instance, I’m particularly fond of the expression tree approach because despite its added complexity, it adds the compile-time support lacking in the string-based approach and ties in nicely to Visual Studio’s built-in refactoring capabilities.

.NET 4.5 improved the story a bit more by introducing a few attributes we could apply to optional parameters to get information about the method caller with CallerMemberNameAttribute being the most notable for this discussion. By decorating a parameter with CallerMemberNameAttribute as shown in the revised RaisePropertyChanged method that follows we’re instructing the compiler to inject the name of the member that invoked the method.

private void RaisePropertyChanged([CallerMemberName] string propertyName = "")
{
  if (PropertyChanged == null) return;

  PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
}

With this revised version, we could simply invoke the method without passing the name and the compiler would resolve the name for us. The problem with this approach is that there’s nothing in IntelliSense to inform us that the parameter is decorated with the attribute and there’s nothing stopping us from providing a value. In fact, the compiler won’t even warn that a name won’t be resolved if we do provide a value. Furthermore, while CallerMemberNameAttribute works nicely for this example, it’s only useful when we need the caller name so it won’t help us if we need the name of anything else such as a parameter name. That’s where the new nameof operator comes in.

C# 6.0’s nameof operator is used to resolve the name of an item at compile-time, essentially inserting the string into the compiled code. What’s really great about it is that it’s simple to use and works on any symbol.

In keeping with the INotifyPropertyChanged example, in C# 6.0 we can add compile-time safety to the original example code simply by replacing:

RaisePropertyChanged("Radius");

with:

RaisePropertyChanged(nameof(Radius));

There are plenty of other places I can see the nameof operator coming in handy. For instance, I often like to use a Guard class to perform a variety of pre-condition checks against method parameter values. Such a class typically looks a bit like this:

public sealed class Guard
{
  private static Lazy<Guard> _against = new Lazy<Guard>();

  public static Guard Against { get { return _against.Value; } }

  public void Null(string arg, object value)
  {
    if (value == null) throw new ArgumentNullException(arg);
  }

  // additional guard methods here
}

I generally create the Guard class as a sealed singleton class rather than as a static class to not only create a more English-like API, but also to allow extension methods in certain scenarios. I also like defining the Guard class methods as a fluent interface but omitted that for brevity.

Given that the Guard class operates off of arguments rather than callers, adding parameters decorated with CallerMemberNameAttribute clearly won’t work in this scenario. Instead we can simply update calls to the various methods to use the nameof operator instead of a hard-coded string and our code will immediately be less fragile.

December’s Indy F# Meetup

IndyF#After a successful first meetup in November we wanted to keep the momentum and get the next meetup on the calendar. Our second meeting will be at 7:00 PM on December 16th at Launch Fishers.

In keeping with our plan to alternate between hands-on sessions and the more traditional speaker-led sessions, the December meeting will follow the later format with not one, but two talks! The event will feature me giving an introduction to type providers and Brad Pillow will give an overview of using FunScript to develop single-page applications.

If either of these topics interest you, please swing over to our meetup page and register.

We hope to see you there!

Fun with Code Diagnostic Analyzers

A few days ago I posted an article detailing how to construct a code diagnostic analyzer and code fix provider to detect if..else statements that simply assign a variable or return a value and replace the statements with a conditional operator. You know, the kind of things that code diagnostic analyzers and code fix providers are intended for. As I was developing those components I got to thinking about what kind of fun I could have while abusing the feature. More specifically, I wondered whether could I construct a code diagnostic analyzer such that it would highlight every line of C# code as a warning and recommend using F# instead.

It turns out, it’s actually really easy. The trick is to register a syntax tree action rather than a syntax node action and always report the diagnostic rule at the tree’s root location. For an extra bit of fun, I also set the diagnostic rule’s help link to fsharp.org so that clicking the link in the error list directs the user to that site.

Here’s the analyzer’s code listing in its entirety:

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Diagnostics;
using System.Collections.Immutable;

namespace UseFSharpAnalyzer
{
    [DiagnosticAnalyzer(LanguageNames.CSharp)]
    public class UseFSharpAnalyzerAnalyzer : DiagnosticAnalyzer
    {
        internal static DiagnosticDescriptor Rule =
            new DiagnosticDescriptor(
                "UseFSharpAnalyzer",
                "Use F#",
                "You're using C#; Try F# instead!",
                "Language Choice",
                DiagnosticSeverity.Warning,
                isEnabledByDefault: true,
                helpLink: "http://fsharp.org");

        public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics { get { return ImmutableArray.Create(Rule); } }

        public override void Initialize(AnalysisContext context)
        {
            context.RegisterSyntaxTreeAction(AnalyzeTree);
        }

        private static void AnalyzeTree(SyntaxTreeAnalysisContext context)
        {
            var rootLocation = context.Tree.GetRoot().GetLocation();
            var diag = Diagnostic.Create(Rule, rootLocation);

            context.ReportDiagnostic(diag);
        }
    }
}

When applied to a C# file, the result is as follows:

Use F# Analyzer

This is clearly an example of what not to do with code analyzers but it was fun to put together and see the result nonetheless. If you’ve thought of any other entertaining uses for code analyzers, I’d love to hear about them!

Indianapolis F# Developers Coding Dojo

There’s a new developer group in town! The inaugural meeting of the Indianapolis F# Developers group is upon us. On Tuesday, November 18th I’ll be leading the group through the Digit Recognizer dojo from Community for F#!

Since I suspect we’ll have some people new to the language, we’ll spend some time talking about some language concepts that are critical to successfully completing the exercise. Make sure you bring a laptop because after the introduction we’ll then split into a few groups (pairs, probably) and work through the problem together. After some time we’ll come back together as a group to talk about the problem and discuss some of the ways that F# lets you focus on the task at hand.

If F#, functional programming, and/or machine learning are of interest to you, please register for the event on our meetup page. We’ll be meeting in the 20 person meeting room at Launch Fishers. The meetup starts at 7:00 PM. We’d love for you to join us!

I Can Analyze Code, And So Can You

[12 December 2014 – Update 1] Upon setting up a new VM I realized that I missed a prerequisite when writing this post. The Visual Studio 2015 Preview SDK is also required. This extension includes the VSIX project subtype required by the Diagnostic and Code Fix template used for the example. I’ve included a note about installing the SDK in the prerequisites section below.

[12 December 2014 – Update 2] The github project has moved under the .NET Analyzers organization. This organization is collecting diagnostics, code fixes, and refactorings like to showcase the capabilities of this technology. The project link has been updated accordingly.

Over the past several years, Microsoft has been hard at work on the .NET Compiler Platform (formerly Roslyn). Shipping with Visual Studio 2015 the .NET Compiler Platform includes a complete rewrite of the C# and Visual Basic compilers intended to bring features that developers have come to expect from modern compilers. In addition to the shiny new compilers the .NET Compiler Platform introduces a rich set of APIs that we can harness to build custom code diagnostic analyzers and code fix providers thus allowing us to detect and correct issues in our code.

When trying to decide on a useful demonstration for these features I thought of one of my coding pet peeves: using an if..else statement to conditionally set a variable or return a value. I prefer treating these scenarios as an expression via the conditional (ternary) operator and I often find myself refactoring these patterns in legacy code. It certainly would be nice to automate that process. It turns out that this is exactly the type of task at which diagnostic analyzers and code fix providers excel and we’ll walk through the process of creating such components in this post. (more…)

Recursive AngularJS Directives

It has been a long time since I’ve done any greenfield UI development. Most of my projects over the past several years have involved extending existing Web Forms or ASP.NET MVC apps with some new controls here or there. You can imagine my delight in being able to work on a brand new system with AngularJS as the front-end technology.

I’ve heard a number of good things about AngularJS over the past year or so and have familiarized myself with enough of its core concepts to hold (hopefully) an intelligent conversation about it but this is my first time actually using it on a real project. Given that I still have plenty to learn it didn’t surprise me too much when I encountered my first real roadblock – a recursive directive. (more…)

Talking TypeScript in Fort Wayne

I’ll be back in Fort Wayne on October 15 to talk about TypeScript. If writing JavaScript frustrates you or you just want to be more productive, join NUFW at the Cole Foundation Conference and Training Center to learn how leveraging TypeScript in your existing projects can lead to cleaner and more expressive code.

Please visit the NUFW site for logistics and registration details.

I hope to see you there!